Package: agtboost 0.9.3

agtboost: Adaptive and Automatic Gradient Boosting Computations

Fast and automatic gradient tree boosting designed to avoid manual tuning and cross-validation by utilizing an information theoretic approach. This makes the algorithm adaptive to the dataset at hand; it is completely automatic, and with minimal worries of overfitting. Consequently, the speed-ups relative to state-of-the-art implementations can be in the thousands while mathematical and technical knowledge required on the user are minimized.

Authors:Berent Ånund Strømnes Lunde

agtboost_0.9.3.tar.gz
agtboost_0.9.3.zip(r-4.5)agtboost_0.9.3.zip(r-4.4)agtboost_0.9.3.zip(r-4.3)
agtboost_0.9.3.tgz(r-4.4-x86_64)agtboost_0.9.3.tgz(r-4.4-arm64)agtboost_0.9.3.tgz(r-4.3-x86_64)agtboost_0.9.3.tgz(r-4.3-arm64)
agtboost_0.9.3.tar.gz(r-4.5-noble)agtboost_0.9.3.tar.gz(r-4.4-noble)
agtboost_0.9.3.tgz(r-4.4-emscripten)agtboost_0.9.3.tgz(r-4.3-emscripten)
agtboost.pdf |agtboost.html
agtboost/json (API)
NEWS

# Install 'agtboost' in R:
install.packages('agtboost', repos = c('https://blunde1.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.72 score 52 scripts 290 downloads 7 exports 2 dependencies

Last updated 3 years agofrom:742d340ce2. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-win-x86_64NOTENov 07 2024
R-4.5-linux-x86_64NOTENov 07 2024
R-4.4-win-x86_64NOTENov 07 2024
R-4.4-mac-x86_64NOTENov 07 2024
R-4.4-mac-aarch64NOTENov 07 2024
R-4.3-win-x86_64NOTENov 07 2024
R-4.3-mac-x86_64NOTENov 07 2024
R-4.3-mac-aarch64NOTENov 07 2024

Exports:gbt.complexitygbt.convergencegbt.importancegbt.ksvalgbt.loadgbt.savegbt.train

Dependencies:RcppRcppEigen